36方格游戏怎么玩
① 六斜(36方格)游戏,网上叫什么名字在哪里可以下载
不知你是哪里的,这有可能是地域游戏。我是临沂的,知道这个游戏。网上好像没有,不过有大炮轰小兵。
② 三十六个格子,横竖各六格!如何从第一格进最后一格出
在数学中有一类问题,比如走“目”字的边,不可以漏走不可以重复可以有交叉!“这类问题是无解的”你的问题也是这类问题中的一个,也是无解的!!“不信的话可以用局部求解的方法,最后连成全体(是不可能串的起来的)”
③ 如何玩九宫格游戏
有两种玩法:
第一种是在在3×3方格盘上,是把1至8八个小木块随意摆放,每一空格其周围的数字可移至空格。玩者要将小木块按12345678的顺序重新排好,以最少的移动次数拼出结果者为胜。
第二种玩法如九宫格算术游戏玩法,推动木格中8个数字排列,横竖都有3个格,使每行、每列两个对角线上的三数之和都等于15。在计算的同时,还必须思考怎么把数字方块推动到相对应的位置上,这个游戏不仅仅考验人的数字推理能力,也同时考验了人的思维逻辑能力。
1、先从原始题目,下图为原始题目:
方法如上,以此类推即可。
④ 1到36放到36个格子里,横竖斜值相同,怎么放
这是一个六阶幻方,方法如下:
第一步:按如下方式列出一个6*6的方格;
本种解法总共可得出2的6次方个解——即64个解!
⑤ 九宫格游戏怎么玩
有两种玩法:
第一种是在在3×3方格盘上,是把1至8八个小木块随意摆放,每一空格其周围的数字可移至空格。玩者要将小木块按12345678的顺序重新排好,以最少的移动次数拼出结果者为胜。
第二种玩法如九宫格算术游戏玩法,推动木格中8个数字排列,横竖都有3个格,使每行、每列两个对角线上的三数之和都等于15。在计算的同时,还必须思考怎么把数字方块推动到相对应的位置上,这个游戏不仅仅考验人的数字推理能力,也同时考验了人的思维逻辑能力。
基础摒弃法
基础摒除法是直观法中最常用的方法,也是在平常解决数独谜题时使用最频繁的方法。单元排除法使用得当的话,甚至可以单独处理中等难度的谜题。
使用单元排除法的目的就是要在某一单元(即行,列或区块)中找到能填入某一数字的唯一位置,换句话说,就是把单元中其他的空白位置都排除掉。
那么要如何排除其余的空格呢?当然还是不能忘了游戏规则,由于1-9的数字在每一行、每一列、每一个九宫格都要出现且只能出现一次,所以:
如果某行中已经有了某一数字,则该行中的其他位置不可能再出现这一数字;
如果某列中已经有了某一数字,则该列中的其他位置不可能再出现这一数字;
如果某区块中已经有了某一数字,则该区块中的其他位置不可能再出现这一数字。
基础摒除法可以分为行摒除、列摒除和九宫格摒除。
由于B2单元格有数字1,所以行B其他所有单元格都不能填入1;由于F4单元格有数字1,所以行F其他所有单元格都不能填入1。这样第7列只有A7单元格能够填入数字1。所以A7单元格的答案是1。
唯余解法
唯余解法是直观法中较不常用的方法。虽然它很容易被理解,然而在实践中,却不易看出能够使用这个方法的条件是否得以满足,从而使这个方法的应用受到限制。
与唯一解法相比,唯余解法是确定某个单元格能填什么数的方法,而唯一解法是确定某个数能填在哪个单元格的方法。另外,应用唯一解法的条件十分简单,几乎一目了然。
由于行G已经填入3、5、6、7、8、9,所以G9单元格不能再填入这六个数字;又由于第9列已经填入1、5、7、8,所以G9单元格不能再填入这四个数字;由于G7-I9九宫格内已经填入1、3、4、5、7、8,所以G9单元格不能再填入这六个数字。综合来看,就说明G9单元格不能填入1、3、4、5、6、7、8、9这八个数字,那样G9单元就只能填写2,所以G9单元格的答案是2。
唯一解法
如果某行已填数字的单元格达到8个,那么该行剩余单元格能填的数字就只剩下那个还没出现过的数字;同理, 如果某列已填数字的单元格达到8个,那么该列剩余单元格能填的数字就只剩下那个还没出现过的数字;如果某九宫格已填数字的单元格达到8个,那么该九宫格剩余单元格能填的数字就只剩下那个还没出现过的数字。
这应该算是直观法中最简单的方法了。基本上只需要看谜题,推理分析一概都用不上,这是因为要使用它所需满足的条件十分明显。同样,也正是因为它简单,所以只能处理很简单的谜题,或是在处理较复杂谜题的后期才用得上。
如图,观察D7-F9这个九宫格,我们发现除了E7单元格以外其余的八个单元格已经填入了1、2、3、4、6、7、8、9,还有5没有填写,所以5就应该填入E7单元格。这是九宫格唯一解法。
区块摒弃法
区块摒除法是直观法中进阶的技法。虽然它的应用范围不如基础摒除法那样广泛,但用它可能找到用基础摒除法无法找到的解。有时在遇到困难无法继续时,只要用一次区块摒除法,接下去解题就会势如破竹了。
当某数字在某个九宫格中可填入的位置正好都在同一行上,因为该九宫格中必须要有该数字,所以这一行中不在该九宫格内的单元格上将不能再出现该数字。
当某数字在某个九宫格中可填入的位置正好都在同一列上,因为该九宫格中必须要有该数字,所以这一列中不在该九宫格内的单元格上将不能再出现该数字。
当某数字在某行中可填入的位置正好都在同一九宫格上,因为该行中必须要有该数字,所以该九宫格中不在该行内的单元格上将不能再出现该数字。
当某数字在某列中可填入的位置正好都在同一九宫格上,因为该列中必须要有该数字,所以该九宫格中不在该列内的单元格上将不能再出现该数字。
区块摒除法实际上是利用区块与行或列之间的关系来实现的,这一点与基础摒除法颇为相似。然而,它实际上是一种模糊排除法,也就是说,它并不象基础摒除法那样利用谜题中现有的确定数字对行,列或九宫格进行排除,而是在不确定数字的具体位置的情况下进行排除的。
由于C3单元格填入数字8,所以行C其它所有单元格不能再填入8;由于I8单元格填入数字8,所以行I其它所有单元格不能再填入8。对于第4列,数字8只能填入D4单元格或F4单元格,而无论是填入D4还是F4,D4-F6九宫格内其它单元格不能再填入数字8。对于第6列,数字8只能填入B6单元格,所以B6单元格的答案是8。
矩形摒除法
矩形摒除法的原理类似于组合摒除法,是专门针对某个数字可能填入的位置刚好构成一个矩形的四个顶点时使用的摒除法。
如果一个数字在某两行中能填入的位置正好在同样的两列中,则这两列的其他的单元格中将不可能再出现这个数字;
如果一个数字在某两列中能填入的位置正好在同样的两行中,则这两行的其他的单元格中将不可能再出现这个数字。
由于D6单元格填入数字4,所以第6列其它单元格不能填入6,对于行F,数字4只能填入F1单元格或F3单元格。由于C5单元格填入数字4,所以A4-C6九宫格其它单元格不能填入数字4;由于H8单元格填入数字4,第8列其它单元格不能再填入数字4,对于行B,数字4只能填入B1单元格或B3单元格。于是数字4在行B和行F能填入的所在列只能是第1列和第3列。所以在其他行,数字4不能填入第1列和第3列。由于I4单元格填入数字4,所以行I其它单元格都不能再填入数字4;由于H8单元格填入数字4,所以行H其它单元格都不能再填入数字4。对于G1-I3九宫格,数字4只能填入G2单元格,所以G2单元格的答案是4。
组合摒弃法
组合摒除法和区块摒除法一样,都是直观法中进阶的技法。组合摒除法,顾名思义,要考虑到某种组合。这里的组合既包括区块与区块的组合,也包括单元格与单元格的组合,利用组合的关联与排斥的关系而进行某种排除。它也是一种模糊摒除法,同样是在不确定数字的具体位置的情况下进行排除的。
如果在横向并行的两个九宫格中,某个数字可能填入的位置正好都分别占据相同的两行,则这两行可以被用来对横向并行的另一九宫格做行摒除。
如果在纵向并行的两个九宫格中,某个数字可能填入的位置正好都分别占据相同的两列,则这两列可以被用来对纵向并行的另一九宫格做列摒除。
由于I2单元格填入数字1,所以第2列其它单元格不能再填入数字1,所以对于D1-F3九宫格,数字1只能填入D1单元格、D3单元格和E1单元格;由于H7单元格填入数字1,所以第7列其它单元格不能再填入数字1,由于A9单元格填入数字1,所以第9列其它单元格不能再填入数字1,对于D7-F9九宫格,数字1只能填入D8单元格或E8单元格。由于D1-F3九宫格和D7-F9九宫格的互相影响,所以在这两个九宫格内数字1分别填入行D和行E,所以对于D4-F6单元格,数字1不能填入行D和行E。由于G4单元格填入数字1,所以第4列其它单元格不能填入数字1。对于D4-F6九宫格,数字1只能填入F6单元格,也就是说F6单元格的答案是1。
⑥ 在线解题 有36个方格,12个苹果放在方格内,使横向,竖向,对角线都是两个,请问怎么放置
6*6的格子,
第一行,1,6放苹果
第二行,3,4放苹果
第三行,2,5放苹果
第四行,2,5放苹果
第五行,3,4放苹果
第六行,1,6放苹果
⑦ 方块拼凑36关怎么过图解法适用于什么
zengrams(方块拼凑)第36关图文通关攻略:
⑧ 方格游戏的游戏规则
1 进入游戏后,以桌长为起点,顺时针方向,系统依次分配蓝、黄、红、绿四色棋子。2 首局由桌长先放棋,次局由上轮获胜玩家先放棋,如果获胜玩家大于1人,则随机抽取一个。
3 首枚棋子必须从棋盘的左下角角尖开始摆放。
4 之后每枚棋子落点至少与一颗同色棋顶角相连,但是边不能与同色棋子相邻,不同色棋子无此限制。
5 棋子朝向可以通过鼠标右键或者按钮来调整,包括左右旋转和水平翻转,以达到能摆放在棋盘中的目的。
6 当摆放的棋子周围都有其他颜色的棋子相邻,则被判定为完美一击,游戏结束后不论胜负,都累计1点积分。
7 当某玩家无法摆放棋子时,轮到该玩家的游戏回合将会被跳过。
8 当所有玩家都无法摆放棋子时,游戏结束。 游戏模式分为个人赛和组队赛,在游戏开始前由桌长更改。
组队赛时,相向玩家为一组。 个人赛
1 剩余棋子上的方格总数少的为胜,其余为负
2 如果剩余方格数最少的大于1人,皆为胜。
3 所有玩家剩余方格数相同,为和局。
组队赛
1 组队一方剩余方格数两两相加,少的一方为胜。
2 如果双方相加后的方格数相同,则为和局。
⑨ 我的世界36号方块怎么用用什么用
36号特性介绍
1.消失性质-右键后消失(在加载速度快的情况下,以它为支撑点放置方块不仅36消失,放置的方块也会消失)
注:退出游戏后一部分消失
2.非实方块性-36号特性方块可以被活塞推动(但被活塞推动不可推动非玩家生物,因为36号方块可以穿透)
注:传染性-若36特性方块推动非36特性方块,则非36特性方块也会成为36特性方块。
3.特殊空隙-在按住潜行键下右键不会有任何反应,如果在这种情况下以36号特性方块为支撑点放置方块,会出现大约1/4方块单位的空隙
4.爆炸-不抗炸,会被炸掉,破坏后不产生掉落物。
5.贴图错误-在特殊情况下生成会产生类似活板门的方块边缘。7.非实方块特性。无法传递红石信号,推动实体等。
⑩ 36宫格怎么填
我找的答案,你看看可以不~有点多幻方是什么呢?如右图就是一个幻方,即将n*n(n>=3)个数字放入n*n的方格内,使方格的各行、各列及对角线上各数字之各相等。
我很早就对此非常感兴趣,也有所收获。
奇阶幻方
当n为奇数时,我们称幻方为奇阶幻方。可以用Merzirac法与loubere法实现,根据我的研究,发现用国际象棋之马步也可构造出更为神奇的奇幻方,故命名为horse法。
偶阶幻方
当n为偶数时,我们称幻方为偶阶幻方。当n可以被4整除时,我们称该偶阶幻方为双偶幻方;当n不可被4整除时,我们称该偶阶幻方为单偶幻方。可用了Hire法、Strachey以及YinMagic将其实现,Strachey为单偶模型,我对双偶(4m阶)进行了重新修改,制作了另一个可行的数学模型,称之为Spring。YinMagic是我于2002年设计的模型,他可以生成任意的偶阶幻方。
在填幻方前我们做如下约定:如填定数字超出幻方格范围,则把幻方看成是可以无限伸展的图形,如下图:
Merzirac法生成奇阶幻方
在第一行居中的方格内放1,依次向左上方填入2、3、4…,如果左上方已有数字,则向下移一格继续填写。如下图用Merziral法生成的5阶幻方:
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
loubere法生成奇阶幻方
在居中的方格向上一格内放1,依次向右上方填入2、3、4…,如果右上方已有数字,则向上移二格继续填写。如下图用Louberel法生成的7阶幻方:
30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45
13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20
horse法生成奇阶幻方
先在任意一格内放入1。向左走1步,并下走2步放入2(称为马步),向左走1步,并下走2步放入3,依次类推放到n。在n的下方放入n+1(称为跳步),再按上述方法放置到2n,在2n的下边放入2n+1。如下图用Horse法生成的5阶幻方:
77 58 39 20 1 72 53 34 15
6 68 49 30 11 73 63 44 25
16 78 59 40 21 2 64 54 35
26 7 69 50 31 12 74 55 45
36 17 79 60 41 22 3 65 46
37 27 8 70 51 32 13 75 56
47 28 18 80 61 42 23 4 66
57 38 19 9 71 52 33 14 76
67 48 29 10 81 62 43 24 5
一般的,令矩阵[1,1]为向右走一步,向上走一步,[-1,0]为向左走一步。则马步可以表示为2X+Y,{X∈{[1,0], [-1,0]},Y∈{[0,1], [0,-1]}}∪{Y∈{[1,0], [-1,0]},X∈{[0,1], [0,-1]}}。对于2X+Y相应的跳步可以为2Y,-Y,X,-Y,X,3X,3X+3Y。上面的的是X型跳步。Horse法生成的幻方为魔鬼幻方。
Hire法生成偶阶幻方
将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j)。在A内两对角线上填写1、2、3、……、n,各行再填写1、2、3、……、n,使各行各列数字之和为n*(n+1)/2。填写方法为:第1行从n到1填写,从第2行到第n/2行按从1到进行填写(第2行第1列填n,第2行第n列填1),从第n/2+1到第n行按n到1进行填写,对角线的方格内数字不变。如下所示为6阶填写方法:
1 5 4 3 2 6
6 2 3 4 5 1
1 2 3 4 5 6
6 5 3 4 2 1
6 2 4 3 5 1
1 5 4 3 2 6
如下所示为8阶填写方法(转置以后):
1 8 1 1 8 8 8 1
7 2 2 2 7 7 2 7
6 3 3 3 6 3 6 6
5 4 4 4 4 5 5 5
4 5 5 5 5 4 4 4
3 6 6 6 3 6 3 3
2 7 7 7 2 2 7 2
8 1 8 8 1 1 1 8